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Abstract 

Users of social platforms often perceive these sites as supportive spaces to post about their mental health issues. 
Those conversations contain important traces about individuals’ health risks. Recently, researchers have exploited this 
online information to construct mental health detection models, which aim to identify users at risk on platforms like 
Twitter, Reddit or Facebook. Most of these models are focused on achieving good classification results, ignoring the 
explainability and interpretability of the decisions. Recent research has pointed out the importance of using clinical 
markers, such as the use of symptoms, to improve trust in the computational models by health professionals. In this 
paper, we introduce transformer-based architectures designed to detect and explain the appearance of depressive 
symptom markers in user-generated content from social media. We present two approaches: (i) train a model to clas-
sify, and another one to explain the classifier’s decision separately and (ii) unify the two tasks simultaneously within a 
single model. Additionally, for this latter manner, we also investigated the performance of recent conversational Large 
Language Models (LLMs) utilizing both in-context learning and finetuning. Our models provide natural language 
explanations, aligning with validated symptoms, thus enabling clinicians to interpret the decisions more effectively. 
We evaluate our approaches using recent symptom-focused datasets, using both offline metrics and expert-in-the-
loop evaluations to assess the quality of our models’ explanations. Our findings demonstrate that it is possible to 
achieve good classification results while generating interpretable symptom-based explanations.
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Introduction
Mental health is a crucial component of overall health 
and well-being [1]. The most recent figures estimate 
mental disorders prevalence in adults over 20% [2]. 
The World Health Organization (WHO) estimates that 
approximately 332 million people globally are affected 
by depression [3]. Early intervention in mental disor-
ders is crucial in mitigating their impact, especially for 
young individuals [4]. However, due to the stigma associ-
ated with depression, more than 60% of individuals with 
the condition do not seek professional support [5]. To 
address this problem, computational researchers have a 

growing interest in assisting in the early detection and 
diagnosis of depression, thereby mitigating its societal 
impact [6].

In this scenario, researchers have found that the writ-
ings posted by individuals on social media platforms are 
valuable evidence for looking for early signs of depression 
[7–12]. Individuals experiencing depression find com-
fort in expressing their thoughts and emotions on these 
platforms, motivated by factors such as privacy or ano-
nymity [13, 14]. Consequently, social media provides a 
complementary opportunity to access valuable informa-
tion about individuals’ state of mind beyond traditional 
professional therapy. The combined use of computational 
linguistic techniques and the vast amount of data from 
social networking has led to significant advancements 
in detecting signs of depression [15]. The field’s critical 
nature motivated much effort in creating curated experi-
mental benchmarks [16, 17], which allowed the devel-
opment and evaluation of many new predictive models. 
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Traditional efforts used engineered features such as word 
counts, posting activity or emotion levels [7–9]. Recently, 
and due to the rise of transformer-based language mod-
els, many researchers used these deep learning models as 
classifiers to identify users at risk of depression and simi-
lar disorders in online environments [10–12].

However, researchers in this field do not plan to replace 
mental health professionals but rather offer support to 
their work. Licensed clinicians play a crucial role in vali-
dating the predictions made by computational models 
and taking appropriate actions with individuals when 
necessary. Computational models may only be used 
carefully to extend those professionals’ reach and facili-
tate their workflow. The existing models, however, pre-
sent many limitations for achieving that goal [18]. One 
significant barrier is their limited ability to explain their 
predictions. Reliable interpretation of models’ decisions 
is mandatory for professionals to understand and trust 
these models and use them in their daily work [19]. One 
way to pursue that is by designing new models incorpo-
rating trustworthy and reliable explanations [20]. Follow-
ing that path, recent research has explored the utilization 
of symptoms collected from validated clinical question-
naires. Most of these proposals, in the field of depression, 
used the markers from the Beck Depression Inventory-II 
(BDI-II) [21] or the 9-Question Patient Health Question-
naire (PHQ-9) [22], which encompass a range of depres-
sive symptoms such as irritability, pessimism or sleep 
problems. The utilization of such symptom markers has 
been shown to improve the explainability, generalization 
and overall performance of depression detection models 
[23–27].

With that motivation, we aim to develop models that 
categorise whether or not social media posts exhibit 
markers of validated depressive symptoms. Accurately 
detecting symptom information along a user’s vast 

amount of writing is the first step in developing explain-
able depression detection models. We go beyond clas-
sifying posts for depressive symptoms by providing a 
explanation for the decisions. It is important to clarify 
that our paper aims not to diagnose depressive disor-
der, but rather to identify markers indicative of potential 
symptoms. The diagnosis of depressive disorder, which 
is the ultimately aim and scope of psychologists in this 
domain, relies on clinical factors such as the presence 
of clinical symptoms and their temporality [28]. For this 
reason, this work seeks to aid in this diagnostic pro-
cess by generating explanations of possible depressive 
symptomatology.

In this context, the terms ‘interpretability’ and ‘explain-
ability’ can be challenging to define in our specific con-
text, given the variations in their use across existing 
literature. Some authors use these terms interchangeably, 
referring to the ability to explain or present systems in a 
manner understandable to humans [29]. However, other 
authors consider them as distinct concepts. In this per-
spective, interpretability relates to the system’s capacity 
to be understood by humans, while explainability encom-
passes being true to reality [30]. In our work, we adopt a 
simple definition: interpretability/explainability refers to 
the extent to which humans can understand the reasons 
behind a decision [31].

In this paper, we introduce a text-to-text pipeline 
designed to achieve two main objectives: first, to clas-
sify the relevance of social media publications to depres-
sive symptoms, and second, to provide explanations 
for these classifications. To implement this pipeline, we 
explore the effectiveness of state-of-the-art transformer-
based models. Figure  1 illustrates the two approaches 
considered: Part a) employs text-to-text models that 
perform classification and explanation simultaneously. 
Part b) corresponds with two-step approaches, utilizing 

Fig. 1  Overall pipeline of our proposals for the classification and generation of natural language explanations for the presence of depression symp-
tom information in social media posts
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separate models for classification and explanation. Addi-
tionally, we evaluate the capabilities of Large Language 
Models (LLMs) using recent general purpose conversa-
tional models such as GPT-3.5 Turbo [32], Vicuna-13B 
[33] and Mistral-7B-Instruct [34] within an few-shot in-
context learning approach. We also investigate how fine-
tuned conversational LLMs perform for this tasks using 
domain-specific models such as MentalLLaMA [35] and 
MentalMistral.

We utilize two datasets, PsySym [25] and BDI-Sen [36], 
for model training and evaluation. These datasets con-
sist of sentences from social media posts associated with 
depressive symptoms. As we will discuss later, these sen-
tences can be used as explanations for a post to explain 
its relevance to a symptom. To assess the quality of the 
generated explanations, we employ a combination of 
offline and expert-in-the-loop metrics. The experimental 
results demonstrate the effectiveness of our methods. By 
prioritizing explainability, our approach bridges the gap 
between automated predictions and human understand-
ing, facilitating more informed clinical decision-making.1

Our study aims to address the following research 
questions: 

RQ1	� Can we train transformer-based models to accu-
rately classify the presence of depressive symp-
toms in social media posts, while providing 
explanations for their decisions?

RQ2	� How many training examples, i.e. hand-labelled 
posts by domain experts, are needed to generate 
good explanations?

RQ3	� Does a unified model, designed for both clas-
sification and explanation, significantly differ in 
performance from using two separated models 
trained for each task?

RQ4	� How do recent conversational LLMs perform in 
detecting and explaining the presence of depres-
sive symptoms in social media content?

Related work
Social media data has gained increasing attention for 
developing depression detection models in recent years 
[37–41]. The evaluation results of those methods show 
promising accuracy numbers [10–12, 15, 42]. Such plat-
forms offer an opportunity to identify disorders at an 
early stage [43], a step that is crucial to reduce negative 
impacts and their associated costs [4, 44].

However, depression detection field still needs to over-
come the cross-cutting problem of many machine learn-
ing applications: explainability. There are two common 

approaches when explaining models’ decisions. On the 
one hand, we may use intrinsically explainable models, 
such as decision trees or linear models [45]. On the other 
hand, we can opt for model-agnostic, typically post hoc, 
explainability methods [46, 47], which can be applied to 
any supervised machine learning model, regardless of its 
architecture. Moreover, the explanations can be local or 
global. Local explanations focus on individual decisions, 
allowing users to understand why the model produces 
a particular decision [48, 49]. These local explanations, 
such as LIME (Local Interpretable Model-Agnostic 
Explanations) [49] and SHAP (Shapley Additive exPla-
nations) [50], have already been used in the social psy-
chology field [51, 52]. Alternatively, global explanations 
consider the whole machine learning model behaviour 
and its predictions altogether [53–55]. Most traditional 
detection methods used engineered features (e.g., word 
counts or sentiment analysis) and based their global 
explanations on feature importance metrics [9, 15]. These 
measures quantify the impact of each feature on the pre-
dictions, providing insights into the relative importance 
of each one.

With the rise of transformer-based models [56], 
researchers have leveraged these models for sentence 
classification tasks to detect signs of depression in social 
media users, achieving impressive results in experimental 
benchmarks [16, 17]. The encoder-decoder architecture 
of transformers effectively captures contextual informa-
tion from input sequences and generates corresponding 
output sequences. However, maintaining the contex-
tual integrity of each token in extensive texts presents a 
challenge. The attention mechanism tackles this by allo-
cating weights to tokens relative to all others, allowing 
the model to focus on relevant parts of the input. Prior 
works have explored the attention mechanism’s as an 
explainability tool [57–59]. Despite its utility, attention 
mechanisms also have limitations, particularly in inter-
preting the weights assigned to input features. There is 
an ongoing discussion in the community about the util-
ity of attention weights for interpretability purposes, with 
some research advocating its benefits [60, 61], while oth-
ers point out its constraints [62, 63].

More recently, an alternative strategy for building 
interpretable models has emerged: the use of generative 
natural language explanations. This technique has several 
benefits: (i) they are readily comprehensible to end users, 
(ii) human annotators can more easily work with natural 
language, simplifying data collection, and (iii) it may be 
feasible to extract natural language explanations from 
large datasets of domain-expert data, a promising pros-
pect for future research [64].

Linked to the recent breakthrough in the field with 
the advent of modern LLMs, Yang et al. [65] explored 

1  Our implementation is available at: https://​gitlab.​irlab.​org/​irlab/​expla​inable-​
depre​ssion-​sympt​om-​detec​tion-​social-​media

https://gitlab.irlab.org/irlab/explainable-depression-symptom-detection-social-media
https://gitlab.irlab.org/irlab/explainable-depression-symptom-detection-social-media
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their application in zero-shot/few-shot mental health 
analysis, assessing the influence of various emotion-
enhanced prompts. This study investigates the poten-
tial of LLMs for explainable mental health assessment, 
elucidating the predictions through Chain-of-Thought 
(CoT) prompting [66]. While the study reveals that 
ChatGPT is capable of generating explanations at a 
human-level, it also notes that the approach has limi-
tations, including unstable predictions and inaccurate 
reasoning. Following this study,  Yang et  al. [35] also 
introduced an interpretable mental health instruc-
tion dataset, constructed with ChatGPT-generated 
explanations. The authors used this data to train Men-
talLLaMA, a new open-source LLM that focuses on 
interpretable mental health analysis with conversa-
tional and reasoning skills. MentalLLaMA covers not 
only depression but also other related mental health 
conditions such as stress or suicide. In contrast, our 
study adopts a symptom-based approach, focusing 
on clinical markers for a nuanced analysis of depres-
sion. We include MentalLLaMA in our evaluations 
as a baseline, examining its performance against 
general-purpose models and its efficacy in symptom-
level analysis. Our proposed method, MentalMistral, 
is another LLM fine-tuned for depression analysis 
but specifically at the symptom level. Notably, Men-
talMistral differs from MentalLLaMA in its data and 
explanation generation approach. While MentalL-
LaMA generates free-form explanations, MentalM-
istral is fine-tuned to generate explanations derived 
directly from segments of the input text, ensuring that 
its insights are firmly rooted in the original user-gen-
erated and human-annotated content. This approach 
ensures that our explanations are grounded in the text 
and provides a direct link between the user’s words 
and the model’s output.

Our goal is to cross the bridge by following prior efforts 
in training text-to-text models in order to produce natu-
ral language explanations for the depression detection 
problem by grounding all the explanations in clinical 
symptoms following the BDI-II questionnaire. As the 
explanations are formulated in human-readable text, our 
method makes the model’s rationale behind the predic-
tions transparent to clinicians. This level of interpretabil-
ity is of critical importance to making informed decisions 
for depression detection [18], promoting both the effi-
cacy and the trustworthiness of our models.

Our proposal
In this section, we describe our proposal for generating 
explainable decisions in the context of detecting depres-
sive symptoms in social media posts. The task is defined 
as follows: given a user post, the model classifies whether 

it is indicative (positive) or non-indicative (negative) of 
any depressive symptom. A positive classification implies 
that the post reflects information for the user on one or 
more of the 21 symptoms described in the BDI-II ques-
tionnaire. Moreover, our objective extends to providing 
natural language explanations for any positive classifica-
tion, showing the reasoning behind the model’s decision. 
We undertake this task in two different manners: either 
as a single output (i.e. train together classification plus 
explanation), or in two separate steps (i.e. initial clas-
sification followed by post hoc explanation). These two 
scenarios are illustrated in Fig. 1. Part (a) is representa-
tive of the single-step approach, explained in "Single-
step" section, while part (b) corresponds to the two-step 
approach, detailed in "Two-steps pipeline" section. If the 
pipeline identifies a post as having potential symptom 
risk, it provides corresponding explanations. Looking at 
the Figure, we can see that the explanations for the deci-
sion are ‘feeling numb’ and ‘hate myself ’. These generated 
explanations are designed to be reviewed and validated 
by health professionals.

Explanations
Natural language explanation generation methods can 
be either extractive or abstractive [67]. In the extractive 
case, the model is asked to point out the parts of the orig-
inal text that led to the decision. Conversely, abstractive 
explanations involve the model to explain the reasons for 
the decision in a free format. Our approach focuses on 
extractive explanations, where the models highlights rel-
evant text spans from the whole input text. This decision 
was driven by data availability and the advantage of this 
method in allowing quantitative analysis of explanation 
quality through overlap statistics with ground truth.

Furthermore, our models are designed to explain only 
the positive classifications. This decision comes from 
two considerations. First, explanations in negative cases 
(where no depressive symptom markers are detected) are 
less clinically relevant, as the primary focus is to identify 
positive indications of depression. Secondly, for extrac-
tive explanations, negatives cases would typically be a 
generic responses, such as "there is no evidence in the post 
about any depression symptom". Therefore, to optimize 
the utility and specificity of our models, we concentrate 
on explaining only the positive cases.

Finetuning text‑to‑text models
Raffel et  al. [68] proposed the idea of transforming 
text-related tasks to follow the sequence-to-sequence 
(seq2seq) format [69], which is referred to as the text-to-
text framework. This diverges from conventional meth-
ods like BERT-based approaches, which train models to 
yield a probability distribution over predefined output 
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classes [70]. In contrast, text-to-text models are trained 
to generate textual sequences. Consequently, these mod-
els may generate an unexpected output, which is consid-
ered a prediction error.

In this context, the input text sequence, which we will 
call x̃ , is defined as 

���	�����������
 ����
	�	��	���

 , 
where <task_prefix> identifies the task to be per-
formed by the model. On the other hand, the output text 
sequence ỹ will be of the form ‘‘<target>’’ , where 
<target> corresponds to the desired output. If we take 
a sentiment analysis task as example, the sequence would 
be: x̃ = ��
�������� ����

�
� ��		���� �	�������

 and 
ỹ = ‘‘negative’’ . The Text-to-Text Transfer Trans-
former (T5) model is one of the most popular models under 
this paradigm [68], and it achieved state-of-the-art results 
in many NLP tasks [71]. While there exist other text-to-text 
models, such as BART [72], prior research indicates that it 
performs worse than T5 in terms of explanation genera-
tion [73]. These models are pre-trained, providing us with 
a robust base that we can further finetune under either the 
single-step or two-steps approaches discussed below for 
generating explanations.

Single‑step
Narang et  al. [74] explored how to teach text-to-text 
models to produce both classification and explana-
tion. For that, they introduced an extension of T5 called 
WT5 ("Why T5?"). To use this method, the keyword 
“explain” is simply added to the input x̃ , preceded by 
‘‘<task_prefix>’’ . The target ỹ is appended with 
the phrase ‘‘explanation: <explanation>’’ . 
Using this template, we adapted it to our task resulting in 
the new input/output format:

The hard brackets denote potentially multiple explana-
tion sentences. An example of input could be “explain 
symptom post: I absolutely hate myself 
(...) And I hate how I feel the need 
to burden other people with this. I 
am so whiny, so disgustingly insensi-
tive (...)”.2 Its corresponding target output would 
be “positive explanation: I absolutely 
hate myself explanation: I am so whiny, 
so disgustingly insensitive”. Thus, in one 
step, users’ posts can be both classified and explained in 
a extractive manner according to whether they indicate 
depressive symptoms or not. Part a) in Fig. 1 illustrates 

x̃ = ��������� 

����� ��
�� ���
���������

ỹ = �����	���� ������������� ������������1�����

��� ������������� ������������N����

this approach, which we use to build two of our systems: 
WT5 and WBART​. Our WT5 system replicates the 
research of Narang et  al. that we just briefly discussed, 
while our WBART system extends the same idea but to 
the BART (Bidirectional and Auto-Regressive Trans-
formers) model [73].

While WT5 and WBART share the common objec-
tive of facilitating single-step classification and explana-
tion, they diverge in their underlying architectures. WT5 
builds upon the T5 model, whereas WBART utilizes the 
BART model. Both models adopt an encoder-decoder 
framework and are suitable for a wide range of sequence-
to-sequence tasks. However, beyond considerations such 
as pretraining corpus, parameter initialization, and acti-
vation functions, the primary distinction between T5 and 
BART lies in their pretraining objectives. T5 implements 
a strategy where 15% of tokens in the input sequence are 
randomly dropped out. These dropped-out tokens are 
replaced by sentinel tokens, and each one has a unique 
token ID assigned. The model’s objective is to predict 
these dropped-out spans, delimited by the sentinel 
tokens. In contrast, BART’s training process involves cor-
rupting documents and optimizing a reconstruction loss 
between the decoder’s output and the original document. 
Unlike T5, BART allows for various document corrup-
tions, including the complete loss of source information.

Two‑steps pipeline
Alternatively, rather than training a single model to 
execute both classification and explanation, we propose 
a two-steps pipeline. In this approach, one model is ini-
tially employed for classification, followed by the use of 
a different model for explanation. We develop three of 
our systems using this methodology: T5 + T5, BERT + 
T5, and MBERT + T5. This process is depicted in part b) 
of Fig. 1. Next, we define the stages of classification and 
explanation as they occur in this pipeline.

Classification  In alignment with recent studies, we con-
duct experiments with various types of pre-trained lan-
guage models to investigate their capabilities in terms 
of classification [24–26]. These models constitute the 
classification module and their sole responsibility is to 
determine whether a post is indicative of a depressive 
symptom. Firstly, we fine-tune a T5 model with the aim 
of generating classification labels in a text format [68]. 
Secondly, we explore the utility of BERT-based architec-
tures, utilizing the pre-trained BERT base uncased model 
[70]. Additionally, we finetuned MentalBERT (MBERT), 
a model purposely pre-trained for mental health applica-
tions using data compiled from various subreddits related 
to mental disorders [75].

2  Full-length post is paraphrased and redacted for clarity and space reasons.
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Explanation  For the explanation module, we finetuned 
a T5 model responsible for explaining the evidence for 
those posts deemed positive by the classification models. 
As previously commented, we only trained this model to 
generate explanations for positive posts. Negative posts 
are discarded and do not enter in the second stage of the 
two-steps pipeline.

In‑context learning with LLMs
In-context learning strategies allow guiding LLMs to spe-
cific behaviours within a given context without directly 
modifying their parameters [76]. In our study, we applied 
this technique to instruct recent conversational LLMs 
to perform our proposed single-step approach (clas-
sify + explain). Using specific guidelines3, we instructed 
the models to act as expert annotators responsible for 
detecting signs of depressive symptoms in user posts. 
Additionally, they must justify their decisions by quoting 
relevant spans from the original text. This approach aims 
to replicate the methodology discussed earlier, which 
outlined the process of finetuning text-to-text models for 
explanation.

We explored this strategy in two different ways: first, 
within a few-shot approach with general purpose mod-
els such as Vicuna-13B   [33] GPT-3.5 Turbo   [32] and 
Mistral-7B-Instruct  [34]. Second, with domain-specific 
models that were previously finetuned such as Men-
talLLaMA-chat-13B   [35] and MentalMistral. Both 
finetuned models can follow instructions to generate 
explanations for the predictions, but they differ in impor-
tant ways. First, MentalMistral is a QLoRA   [77]-fine-
tuned version of the Mistral-7B-Instruct model that we 
implemented with the same symptom-based data as the 
rest of our models, whereas MentalLLaMA is based on 
LLaMA2-chat-13B   [78]. Their strategies to identify 
depression also vary: MentalLLaMA focuses on assessing 
depression by classifying users into depressed and non-
depressed categories, while MentalMistral uses clinical 
indicators to assess depression at the symptom level. Fur-
thermore, the nature of their generated explanations are 
also different. While MentalLLaMA generates free-form 
explanations, all our methods, including MentalMistral, 
are specifically tuned to generate explanations from frag-
ments of the original text.

Experiments
In this section, we describe the experiments conducted to 
evaluate the effectiveness of our approaches for symptom 
detection and explanation over social media content. We 
present the datasets utilized, followed by a description 
of the experimental configurations and training details. 

Subsequently, we explore the metrics employed to meas-
ure the performance of our methods, encompassing both 
offline evaluations and those involving human experts.

Datasets
In this work, we considered the symptoms of the BDI-
II clinical questionnaire [21]. The BDI-II covers 21 rec-
ognized symptoms, such as pessimism, sleep problems 
or self-dislike. We have decided to align with the BDI-II 
symptoms by its widespread adoption in clinical prac-
tice [79] and its presence in prior literature concerning 
depression detection on the Internet [16, 23, 26, 41, 80]. 
We obtained the symptom evidence sentences from the 
BDI-Sen [36] and PsySym [25] resources. Both datasets 
consist of symptom-annotated sentences for depression 
sourced from the Reddit platform. BDI-Sen comprises 
relevant sentences related to the 21 symptoms covered 
in the BDI-II, while PsySym includes 14 main symptoms 
covered within the Diagnostic and Statistical Manual of 
Mental Disorders (DSM-5) [81]. Table 1 presents the sta-
tistics of the positive posts from the datasets. In addition 
to positive posts, we also included control instances in 
the experiments. We selected random control sentences 
from the datasets, totalling 1998 control posts. In "Ethical 
and environmentalaspects" section, we comment on the 
anonymization and ethical use of the data.

The datasets comprise two different data sources. Thus, 
for our experiments, we can define five different settings 
for train and test sets by combining both resources. Ini-
tially, for both BDI-Sen and PsySym, we split their data 
80-20 into training and test sets. Then, we fill these splits 
with control samples from PsySym with ratios 1:1 for 
training set and ≈ 1:5 for the test set.4 Table 2 illustrates 
the five different settings we consider, where we test each 
dataset on itself, and also using as test the other one to 
evaluate if it can generalize correctly. In the last setting 
(M-M), we merge both datasets.

Table 1  Statistics of the positive instances of our explain-
ability dataset

Average length of posts/explanations are expressed as tokens

BDI-Sen PsySym

Number of posts 357 752

Number of explanations 546 764

Avg. number of expls. per post 1.53 1.02

Avg. length of post (in tokens) 127 515

Avg. length of explanation 13.76 13.44

3  See B for details of the prompt strategy we adopted.
4  We include more control sentences in the test set to replicate real scenarios, 
where there are many more negatives examples than positive ones.
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Experimental settings
Single‑step
For our single-step strategy, we finetuned two distinct 
pretrained text-to-text models: WT5 and WBART​. For 
the WT5 model, we followed the training protocol from 
Narang et  al. [74], applying 40 epochs of fine-tuning to 
the t5-large model. This adaptation was for our clas-
sify + explain task, utilizing the AdaFactor optimizer 
with a constant learning rate of 0.001. The input and out-
put sequence lengths were set to 2048 and 512 tokens, 
respectively. In the case of WBART, we fine-tuned the 
bart-large model, adhering to the default learning 
rate and hyperparameters. Due to computational limi-
tations, the maximum lengths for the source and target 
sequences were reduced to half of those used in WT5.

Additionally, we employed the conversational LLMs 
previously mentioned (Vicuna-13B, GPT-3.5, Mistral-
Instruct, MentalLLaMA, and MentalMistral) within 
the single-step framework. All our models were trained 
and evaluated using NVIDIA A100-SXM4 80GB GPUs. 
For GPT-3.5, we relied on API calls. All conversational 
LLMs were directed following the in-context learning 
strategy described in "In-context Learning with LLMs" 
section, using a balanced set of 30 positive and 30 control 
samples randomly chosen.

Two‑steps
In this approach, we first used two BERT-based mod-
els for text classification: BERT base, and MBERT base, 
following the existing implementations from the Hug-
gingFace library without any additional hyperparameter 
tuning. The learning rate was 2e−5 during 20 epochs 
and a batch size of 32. We also finetuned a T5 on its 
t5-large configuration for text classification by gen-
erating labels in textual form. For explanations, we used 
another t5-large to explain the symptoms presence. 
The parameters used to finetune the T5 models were 
the same as those used for WT5, with same sequence 
lengths. As a result, we constructed three different 

variants within this approach: T5 + T5, BERT + T5, and 
MBERT + T5.

Evaluation
Classification
To evaluate the classification performance of our systems, 
we consider micro-averaged F1 due to the unbalanced 
nature of the datasets. By using micro-F1, we account 
for the importance of each instance, giving more weight 
to the minority class (positive). Additionally, we include 
the number of true positives (TPs) to gain insight into the 
actual number of correctly identified positive instances. 
This information is particularly significant since our sys-
tems only generate explanations for the positive samples.

Explanation
LLMs can generate text unsupported by the input and 
produce inaccurate responses, a phenomenon called 
“hallucination” [82]. This is a magnified risk considering 
the sensitive factor of the mental health domain [65]. For 
this reason, we force extractive explanations and instruct 
the models to reflect on a given text and provide a deci-
sion-supporting fragment. We ensure that our systems 
are less prone to hallucination than in a free-form expla-
nation setup. In the clinical domain, where the validity 
and truthfulness of the explanations extracted are crucial 
[18], the generated texts’ reliability is essential. To ensure 
the trustworthiness of the generated explanations, we 
complement classical offline metrics with expert-in-the-
loop evaluation performed with three domain experts.
Offline
We used three offline metrics: ROUGE-L-F1 [83], Cor-

pus BLEU [84], and Token F1 [85], each offering differ-
ent evaluation perspectives. All these metrics compare 
the generated explanations with the text reference con-
sidered as golden truth. ROUGE emphasizes content 
overlap, ensuring that the generated output captures 
essential information from the references. On the other 
hand, BLEU focuses on fluency and adequacy, assess-
ing the linguistic quality and alignment with references. 
Since these metrics effectively measure the quality of the 

Table 2  Settings considered in our experiments by combining the BDI-Sen and PsySym datasets

Setting Training Test

Dataset ⊕/⊖ Avg. expls. Dataset ⊕/⊖ Avg. expls.

B-B BDI-Sen 285/285 1.48 BDI-Sen 72/359 1.72

B-P BDI-Sen 285/285 1.48 PsySym 151/753 1.02

P-P PsySym 601/601 1.01 PsySym 151/753 1.02

P-B PsySym 601/601 1.01 BDI-Sen 72/359 1.72

M-M Mix 886/886 1.16 Mix 223/1112 1.25
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generated text by comparing it against reference hypoth-
eses, ROUGE and BLEU can evaluate the quality of our 
explanations while still allowing some paraphrasing. This 
flexibility can be beneficial when the explanation text 
slightly differs from the ground truth yet conveys the 
same meaning. Additionally, Token F1 measures which 
input tokens labelled as an explanation in the ground 
truth are present in the generated one. Thus, Token F1 
score is computed through a token-by-token analysis, 
identifying if the tokens generated are the same as the 
references.
Expert-in-the-loop
We also performed an online evaluation using three 

domain experts to assess the practical utility and clini-
cal relevance of the generated explanations. The eval-
uators consisted of two psychologists and a speech 
therapist. To ensure the consistency of judgments, we 

organized training sessions with the evaluators dur-
ing which we discussed the criteria for relevance and 
established a consensus on samples of both positive 
and negative explanations. An explanation was con-
sidered relevant if it successfully provided evidence 
for the presence of a depressive symptom in the post. 
For a detailed view of the instructions provided to the 
assesor please see "Appendix 1: Assessment guidelines" 
section. We provided the experts with explanations 
generated by our WT5 model variant under the M-M 
setting (see Table 3), leading to a total of 209 explana-
tions being evaluated. We chose this setting because it 
includes both datasets and selected WT5 since it was 
the best performing model in this scenario. 

Table 3  Results of our methods in the different proposed settings

Bold values represent the best performance for each setting and metric, with higher values indicating better results

F1, TPs, ROUGE, BLEU and TF1 denote micro-F1, number of true positives, ROUGE-L-F1, Corpus BLEU and Token F1. More details about these metrics can be found in 
"Evaluation" section. All metrics are in the range 0–1, except for TPs, which are an integer

Setting Metric Finetuned PLMs In-context convers. LLMs

Single-step Two-steps Few-shot Finetuned

WT5 WBART​ T5 + T5 BERT + T5 MBERT + T5 Vicuna-13B GPT-3.5 Mistral-Instruct MentalLLaMA MentalMistral

B-B F1 0.91 0.88 0.93 0.95 0.92 0.73 0.82 0.64 0.88 0.89

TPs 68 68 67 58 65 41 62 68 51 51

ROUGE 0.62 0.60 0.69 0.75 0.72 0.42 0.55 0.39 0.39 0.44

BLEU 0.53 0.53 0.55 0.61 0.58 0.22 0.42 0.18 0.19 0.26

TF1 0.48 0.48 0.54 0.60 0.58 0.34 0.45 0.36 0.37 0.31

B-P F1 0.87 0.86 0.86 0.91 0.92 0.78 0.87 0.66 0.92 0.93
TPs 125 134 79 79 144 140 151 150 131 141

ROUGE 0.31 0.22 0.35 0.34 0.29 0.14 0.17 0.12 0.12 0.17

BLEU 0.22 0.15 0.23 0.22 0.18 0.06 0.08 0.07 0.07 0.08

TF1 0.10 0.10 0.12 0.12 0.10 0.11 0.10 0.12 0.17 0.09

P-P F1 0.98 0.98 0.98 0.97 0.98 0.69 0.94 0.80 0.93 0.96

TPs 143 149 145 150 149 150 151 150 147 144

ROUGE 0.53 0.56 0.45 0.47 0.45 0.15 0.21 0.16 0.16 0.17

BLEU 0.43 0.53 0.34 0.36 0.35 0.08 0.11 0.12 0.08 0.08

TF1 0.47 0.51 0.38 0.38 0.38 0.09 0.11 0.08 0.09 0.08

P-B F1 0.89 0.89 0.89 0.91 0.90 0.62 0.85 0.73 0.85 0.84

TPs 35 35 40 48 42 53 49 47 51 29

ROUGE 0.61 0.71 0.61 0.57 0.61 0.36 0.53 0.48 0.47 0.48

BLEU 0.61 0.68 0.60 0.57 0.58 0.19 0.34 0.34 0.33 0.31

TF1 0.46 0.51 0.45 0.42 0.45 0.23 0.36 0.32 0.35 0.30

M-M F1 0.95 0.94 0.95 0.95 0.96 0.59 0.91 0.45 0.77 0.88

TPs 209 211 206 211 211 195 200 215 191 191

ROUGE 0.57 0.53 0.54 0.54 0.54 0.22 0.28 0.25 0.23 0.24

BLEU 0.54 0.47 0.51 0.51 0.51 0.10 0.17 0.15 0.09 0.19

TF1 0.50 0.48 0.46 0.46 0.45 0.14 0.19 0.17 0.17 0.14
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Results and discussion
In this section, we present the results of the experi-
ments designed to address the four research questions 
posed in the introduction.

RQ1: can we train transformers models to detect 
and explain depressive symptoms?
Symptoms classification
The results presented in Table  3 confirm that it is pos-
sible to train transformer architectures to detect traces 
of depression symptoms in social media posts. Across 
all the different settings, we observe that the worst per-
forming finetuned PLM achieves a classification accu-
racy of 0.86, which is the case for the WBART and T5 + 
T5 methods for the B-P setting. On the other hand, in-
context conversational LLMs have more difficulties in 
detecting the presence of depression symptoms within a 
few-shot approach, and in some cases their performance 
drops to an accuracy of 0.45, which is the case of the 
Mistral-Instruct method for M-M setting. However, con-
versational LLMs show the ability to learn this task easily 
when finetuned. Looking at the MentalMistral method, 
which is a finetuned version of Mistal-Instruct at the 
symptom level, we can see that it improves its classifica-
tion accuracy from 0.45 to 0.88 and from 0.66 to 0.93 for 
the M-M and B-P settings, respectively. It is particularly 

noteworthy that for the latter setting, MentalMistral is 
the method that best detects the symptoms of depres-
sion. Comparatively, MentalLLaMA, another fine-tuned 
LLM designed for broader mental health conditions 
beyond depression, shows slightly inferior performance 
compared to MentalMistral.

To better understand how well the different methods 
detect depression symptoms across settings, Table  4a 
contains a column with the F1 average across every 
setting. The values are consistent with the analysis just 
presented. On the one hand, all finetuned PLMs have 
a similar performance in terms of detection, which is 
slightly higher in the case of the two-step pipeline. It is 
also clear that the in-context conversational LLMs are 
a step behind, with the Mental-Instruct method being 
the worst performer (average F1 of 0.66), but that they 
improve significantly when finetuned, either at the 
symptom level (MentalMistral) or not (MentalLLaMA).

We also show in Table  4b a comparison of the per-
formance of our methods across all the dataset settings. 
We observe the best classification figures in the P-P set-
ting (training and testing on the PsySym dataset), with 
all finetuned PLMs achieving F1 values above 0.97 and 
all methods averaging an F1 value of 0.92. This num-
bers also provide insights into how the models general-
ise when tested on a different dataset (the B-P and P-B 

Table 4  Metric averages per method and proposed setting

Bold values represent the best performance for each setting and metric, with higher values indicating better results

F1, TPs, ROUGE, BLEU and TF1 denote micro-F1, number of true positives, ROUGE-L-F1, Corpus BLEU and Token F1. More details about these metrics can be found in 
"Evaluation" section. All metrics are in the range 0–1, except for TPs, which are an integer

(a) Per method.
Method F1 ROUGE BLEU TF1

WT5 0.91 0.53 0.47 0.40

WBART​ 0.91 0.52 0.47 0.42
T5 + T5 0.92 0.53 0.45 0.39

BERT + T5 0.94 0.53 0.45 0.40

MBERT + T5 0.94 0.52 0.44 0.39

Vicuna-13B 0.68 0.26 0.13 0.18

GPT-3.5 0.88 0.25 0.22 0.24

Mistral-Instruct 0.66 0.28 0.17 0.21

MentalLLaMA 0.87 0.24 0.15 0.23

MentalMistral 0.90 0.30 0.18 0.18

(b) Per setting.

Setting F1 TPs ROUGE BLEU TF1

B-B 0.85 60 0.56 0.41 0.45
B-P 0.86 127 0.22 0.14 0.11

P-P 0.92 148 0.33 0.25 0.26

P-B 0.84 43 0.54 0.46 0.39

M-M 0.84 204 0.38 0.32 0.32
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settings). We observe bad generalisation in the case of 
the P-B setting. For instance, looking at specific models 
in Table  3 the T5 + MBERT model achieved an F1 of 
0.98 when trained and tested on the PsySym dataset (P-
P setting). Meanwhile, its performance dropped to 0.90 
when tested on the BDI-Sen dataset (P-B setting). How-
ever, in the M-M setting, the trained models obtained 
an F1 greater than 0.94.

To further analyse this generalisation problem, we illus-
trate the distribution of true and false predictions of the 
systems in Fig. 2.

As observed in the confusion matrices,5 the models 
have a high ratio of true positives, with the majority iden-
tifying over 90% of the positive instances. Furthermore, 
the ratio of false negatives is remarkably small. How-
ever, we can again observe significant deviation in these 
trends in the matrix for the P-B setting. Here we can see 
the reason for that problem: the PsySym dataset cov-
ers 14 symptoms of depression, while BDI-Sen includes 
all 21 symptoms of the BDI-II. In the P-B setting, not all 
symptoms of BDI-Sen have been seen during training, 

leading to a substantially higher false positive number. 
This finding highlights the potential generalisation issues 
these models may encounter regarding the data used for 
training. False negatives are a crucial metric for clinical 
applications. In clinical practice, false negatives carry 
great significance. Failing to identify an individual at risk 
has far more severe implications than falsely identifying a 
healthy person (false positives).

Symptoms explanation
Regarding explanation quality, offline metrics and human 
evaluation results indicate promising results. Once again, 
finetuned PLMs outperform the most recent conversa-
tional instructed LLMs, which can be seen in columns 
ROUGE, BLEU and TF1 of Table 4a. It is interesting to 
note that, in contrast to symptom detection, modern 
LLMs do not significantly improve the quality of their 
explanations after finetuning. This idea is consistent with 
the results presented for RQ2, where it is shown that the 
quantity and quality of examples is much more critical 
for explanation than for classification supporting the idea 
that generating explanations is more challenging than the 
classification task. As previously stated ("Explanations" 
section), it is crucial to bear in mind that we generate 
explanations only for positive cases. Hence, the explana-
tion quality numbers have to be jointly considered with 
the number of true positives (refer to the TPs rows in 
Table 3). When considering the offline metrics (ROUGE, 
BLEU, and TF1), the fairest comparison can be made in 
the M-M setting, since it is the largest setting and pro-
vides a similar number of TPs cases for all models. Here, 
WT5 emerges as the top performer, achieving a ROUGE-
L F1-score of 0.57. The two-step models also perform 
closely to the single-step models (WT5 and WBART) in 
nearly all settings. In the B-B setting, where the numbers 
of true positives are also roughly similar, they outperform 
the single-step models.

In terms of human evaluation, we presented the expla-
nations generated by our WT5 model in the M-M setting 
to three domain experts, with 209 explanations provided 
to each of them. Table 5 provides four examples of posi-
tive predictions along with their generated explanations. 
The first three rows correspond to relevant explanations, 
since the three human assessors considered them as rel-
evant. The last row shows a non-relevant explanation. 
In this case, while it appears to be topically related to a 
symptom of depression (Suicidal ideas), the experts clas-
sified it as non-relevant, as it does not provide any infor-
mation about the symptom. Overall, the three assessors 
found 73%, 53%, and 77% of the explanations relevant 
and clinically useful, resulting in an average of 68%. A 
more granular inspection of the assessors’ annotations 
indicates that, out of 209 explanations, 154 were deemed 

Fig. 2  Confusion matrices showing the predictions accuracy for the 
proposed settings and WT5, WBART, MBERT and GPT-3.5 systems

5  Due to clarity and space constraints, not all systems are shown.
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clinically useful by at least two of the three assessors. In 
terms of total consensus, which is an important factor as 
it unambiguously confirms or rejects the practical util-
ity of an explanation, we find that assessors agreed on 
the non-relevance of 25 explanations and the relevance 
of 86. Regarding the inter-annotator agreement among 
domain experts in our study, we computed a pairwise 
agreement to measure the percentage of cases where the 
three assessors reached a consensus in their annotations. 
The observed agreement values among the pairs were 
76%, 66%, and 65%, yielding an average agreement of 69% 
regarding the clinical relevance of the explanations. This 
level of concordance aligns with similar studies in the 
field [25, 36, 86], considering the challenges associated 
with annotating in the complex domain of mental health 
[87].

RQ2: How many labels are needed to generate good 
explanations?
Since collecting data labelled by domain experts in the 
mental health domain on social media is a costly process 
[86, 88], we investigate here how many training samples 
are needed to generate quality explanations. To analyze 

this aspect, we designed two different experimental set-
ups: First, in "Impact when training withlimited explana-
tions" section, we investigate the effect of the number of 
labelled examples on the quality of explanations for the 
experimental setup used in this paper. Then, in  "Assess-
ing explanation qualitystabilization when varyingnumber 
of training samples" section, we validate the results of this 
experiment adapting and including an additional external 
dataset.

Impact when training with limited explanations
To assess how the quantity of training samples would 
affect our experiments, we trained the PLMs with a grad-
ually increasing number of examples using our larger 
setting, denoted as M-M. This setting includes 886 expla-
nations in the training set, and we compared our mod-
els’ performance using subsets of 100, 200, 400, and 800 
training samples. Figure 3 presents the results across the 
three evaluation metrics (ROUGE, BLEU and TF1) that 
measure the quality of explanations generated. As shown 
in the Figure, there is a nearly linear improvement with 
respect to the number of training instances for all metrics 
and models. For instance, when our models are trained 

Table 5  Each row presents an example of positive predictions in the M-M setting using the WT5 model

Explanations are highlighted as judged by the assessors. The Relevant column displays the relevance labels after the human assessment. Samples have been 
paraphrased for privacy and shortened for clarity

Input post Relevant

(...) I want to start a business one moment, then pay out my IRA and travel throughout Europe. I do not comprehend who I am. My 
short-term memory is terrible, and I can not concentrate. I’m unsure of what to do. You guys are going to advise some really fantastic 
actions for me to pursue, but ultimately I lack the willpower or energy to carry out your advice.

1

Recently, I have been having a lot of difficulty with this. I have been depressed, worried, or ill since I was a child. Like my youth has been 
taken from me. As a last-ditch effort to feel like a person once more, I am actually considering seeing a naturopathic physician. Anyway, I 
hope you soon feel better.

1

I abhor myself to the core. Even reading back through Reddit postings I posted a few days ago makes me want to commit suicide. I am 
such a disgusting waste of life - useless, unproductive, and with a future that is already in uncertainty. And the fact that Im feeling 
this way on spring break is something I detest so fiercely. (...)

1

(...) how EMTs and first responders are looking after them, and how those individuals should persevere to witness another day. None‑
theless, I find myself unable to avoid fall into thoughts about someone’s death. This triggers memories of my own experiences and 
how I might find myself in that person’s position (...)

0

Fig. 3  Offline metrics in relation to the quantity of samples kept in the training data for the M-M setting
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with only 100 explanations, we achieve approximately 
half the performance compared to the entire training 
split. For completeness, we also investigated here the per-
formance of the classification task, where we observed a 
more robust behaviour. For instance, using only 200 sam-
ples, all models consistently achieved a good F1 score, 
being higher than 0.9. In line with previous literature 
[74], we find that the number of training samples affects 
the quality of the explanations more than the classifica-
tion results.

Assessing explanation quality stabilization when varying 
number of training samples
Following the above experimentation described 
in  "Impact when training withlimited explanations" sec-
tion, we further investigated this aspect by conducting 
an additional experiment adapting the DepreSym [89] 
resource, an external dataset sourced from Reddit. This 
dataset also contains sentences that indicate the pres-
ence of markers for depression symptoms, allowing us 
to collect the user posts and then use these sentences as 
explanations. Using this resource, we shuffled these new 
explanations within the previous training set of the M-M 
setting and evaluated the explanation metrics every 200 
training examples for the original M-M test set. Thus, we 
added 1956 new training examples, but kept the previous 
test set. Figure 4 shows our results. Looking at the per-
formance of our models, we can see that the values of the 
metrics continue to improve after 800 training instances. 
However, around 2000 instances, we found a trend 
towards stabilisation of performance. Therefore, we can 
observe that after a certain point incorporate additional 
training samples does not guarantee an improvement on 
the performance.

RQ3: single‑step vs Two‑steps
Through our experimentation, we conducted a compara-
tive analysis of finetuned PLMs to perform the classify + 
explain tasks in a single step (WT5 and WBART) against 

those operating in two separate steps (T5 + T5, BERT + 
T5, MBERT + T5). Regarding the classification task, the 
two-step models exhibited a slight advantage, as reflected 
in column F1 from Table 4a. Specifically, the BERT-based 
models consistently outperformed the other models, with 
BERT and MBERT achieving the best classification per-
formance in four of the five settings. Regarding explana-
tion, to ensure a fair comparison, we focused on settings 
with a similar number of true positives (TPs), which led 
us to consider the P-P and M-M settings. In both cases, 
the models with the best explanations were WT5 and 
WBART.

In the context of our investigation, we can see that both 
the single-step and two-step approaches show promis-
ing potential for the classification and explanation tasks. 
However, we can see slight differences of the models in 
the two tasks. Looking at the results, we observe that, 
single-step systems often yield superior results in terms 
of explanation, even if their classification performance 
is marginally lower. This aligns with prior research sug-
gesting that consolidating classification and explanation 
into a single step can enhance the quality of explanations 
[74, 90, 91]. Under the single-step paradigm, classifica-
tion and explanation are treated as an interconnected 
whole rather than discrete operations. This integration 
may lead to more cohesive and informative explana-
tions, underscoring the importance of considering the 
aggregated nature of the task. Regarding the slight better 
performance of the two-steps models in terms of classifi-
cation, this also aligns with prior work, since BERT-based 
models are still predominant in classification for similar 
scenarios [65].

RQ4: in‑context Conversational instructed LLMs 
performance
When evaluating the results achieved by conversational 
LLMs, it is important to distinguish between general pur-
pose models used within a few-shot approach (Vicuna-
13B, GPT-3.5 and Mistral-Instruct) and domain-specific 

Fig. 4  External dataset validation incorporating DepreSym training samples



Page 13 of 18Bao et al. Health Information Science and Systems           (2024) 12:47 

finetuned versions such as MentalLLaMA and MentalM-
istral. The overall results presented in Table 3 show that 
all the instructed LLMs achieve lower performance than 
our finetuned PLMs, especially for the explanation task. 
Table  4a reveals that it is GPT-3.5 method that comes 
closer to the best-performing systems among the general 
purpose LLMs in terms of classification but, remains far 
behind in terms of explanations quality. Moreover, our 
experiments also show that conversational LLMs benefit 
greatly from finetuning, whether they were finetuned at 
the symptom level (MentalMistral) or not (MentalL-
LaMA). This leap in performance can be demonstrated 
by comparing the results of MentalMistral with those 
of its base model, Mistral-Instruct. MentalMistral expe-
riences a notorious boost and establishes itself as the 
model with the best classification results among the 
conversational LLMs. However, as noted in "Symptoms 
explanation" section, even these fine-tuned LLMs face 
challenges in generating good explanations, and can pro-
vide inappropriate and inaccurate explanations due to the 
hallucination effect [82]. In order to study this phenom-
enon in the context of our experiments, we calculated 
the percentage of cases where the generated explanations 
do not exactly match the original text. For the GPT-3.5 
model and the M-M reference setting, this occurs in only 
1.5% of cases. This low rate suggest a high degree of pre-
cision in the model’s output, exemplifying its effective-
ness in generating extractive explanations.

Despite these results, it is important to consider that 
we only used 30 positive and negative examples to guide 
these systems through in-context learning .6 The limited 
exposure to examples for this new task might have con-
tributed to their relatively lower performance. Moreover, 
recent studies have shown the variability in the perfor-
mance of these models depending on the prompts quality 
[92, 93]. The prompt we defined for all of our experi-
ments is listed on "Appendix 2: Prompt for conversational 
LLMs" section, and we plan to explore the impact of dif-
ferent prompt strategies in these particular scenarios.

Conclusions and future work
In this paper, we presented the use of different text-
to-text pipelines to classify and explain the presence 
of depressive symptoms on social media. Our mod-
els, in addition to detecting relevant social media posts 
related to depressive symptoms, also explain in natural 
language their decisions. Leveraging two datasets con-
taining sentences indicative of depressive symptoms, 
we evaluated our model variants using a wide variety of 
offline metrics and expert-in-the-loop evaluations. Our 

results are promising in both classification and explana-
tion tasks. Within our methods, we compared single-step 
approaches (where classification and explanation are per-
formed by the same model) against two-step approaches 
(where the two tasks are performed by separate models). 
Moreover, our analysis extended to examining the capa-
bilities of recent conversational LLMs in detecting and 
explaining depressive symptoms. Our study enriches the 
expanding field of explainable AI in mental health appli-
cations. By offering healthcare systems models capable of 
explaining their decision-making process, we allow clini-
cians to understand the automated reasoning and build 
trust in the outputs of these models.

While we presented an extractive approach for gener-
ating explanations, our discussions with domain experts 
have revealed the potential to create abstract explana-
tions, matching the way one expert would explain the 
existence of depressive symptoms to another. Moreover, 
it might be advantageous to identify the precise symptom 
present in positive posts, leaving behind the actual binary 
paradigm and defining a new multi-class approach. An 
important direction for future work involves incorporat-
ing temporal information into our models. We are plan-
ning to integrate the publication dates of Reddit posts, 
enabling our systems to process data in temporal batches. 
This approach would facilitate weekly or monthly analy-
sis, thereby improving our decision-making processes. 
Such temporal integration is valuable for providing cli-
nicians with insights and evidence of the evolution of 
depressive symptoms in individuals over time. Addition-
ally, this incorporation would allow us to conduct pop-
ulation-level analyses, examining symptom prevalence 
during specific periods, such as the COVID-19 pan-
demic [94]. This temporal perspective may help to under-
stand and respond to fluctuating mental health trends 
in the digital era. As a limitation, we are also aware that, 
although we use two different datasets, the data obtained 
comes from a single social media platform. In future 
research, extending our approach across diverse plat-
forms, languages, and cultural contexts would be valua-
ble to evaluate its cross-cultural applicability. Overall, we 
believe that, the creation of models capable of explaining 
the detection of clinical markers, is an important first 
step towards developing sophisticated natural language 
explanations for depression detection and related analy-
sis on social media.

Ethical and environmental aspects
The data used in our study were obtained from publicly 
accessible sources, adhering to the exempt status under 
title 45 CFR §46.104. The use of BDI-Sen, PsySym and 
DepreSym datasets was accomplished in full compliance 
with their respective data usage policies. To maintain 6  Models have a maximum sequence length which implies a limit on the num-

ber of samples.
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privacy, we implemented measures to ensure that any 
personal information was unidentifiable and all users 
remained anonymous. The data used were sourced from 
Reddit, and we strictly conformed to all terms specified 
by this platform. For the human evaluation, even though 
the assessors were domain experts, they were not sub-
jected to any imposed time restrictions, and reported 
no adverse effects post-evaluation. Importantly, it must 
be emphasized that the systems described in this study 
are intended to complement the work of healthcare pro-
fessionals, not replace them. The development of such 
technologies necessitates a cautious approach, with a 
continuous emphasis on their ethical use and a firm 
respect for patient privacy and autonomy.

The experiments for this study were conducted using 
our private infrastructure, with a carbon efficiency of 
0.432 kgCO2eq/kWh, which reflects the OECD’s 2014 
yearly average. The resources utilised included 10  h of 
computation on an RTX A6000 device (with a TDP of 
300W) and 50 h on an A100 PCIe 40/80GB device (with 
a TDP of 250W). Total emissions are estimated to be 8.43 
kgCO2eq. To provide some perspective, this is equivalent 
to driving an average car for 34 kilometres. These figures 
were determined with the assistance of the Machine-
Learning Impact Calculator [95].

Appendix 1: Assessment guidelines
Considering different depressive symptoms based on the 
BDI questionnaire (e.g: Sleep problems, Suicidal Idea-
tion, Sadness, Pessimism...), the original task is that, from 
a Reddit publication, the predicted explanations must 
give relevant information to some kind of depressive 
symptomatology.

Important Notes
A relevant explanation should provide some informa-

tion about the state of the individual related to a depres-
sive symptom. It is not necessary that the exact same 
words are used for the explanation, but they must corre-
spond to what was described in the original post. Each 
post can have more than one explanation. In this case, 
if one of them is relevant, this is enough to assess it as 
relevant.

Examples (some original posts and the correct 
explanation)

•	Relevant explanation

–	 Post: “I’m very concerned about my future. I’m in 
uni atm, and I’m terrified of not getting a good job, 
not being able to have kids, not passing my exams, 
not having enough money to buy my own house, 

take care of my kids (I’m staying hopeful) or do the 
things I want to do. I’m basically terrified of not 
being happy with my life”.

–	 Explanation: “I’m basically terrified of not being 
happy with my life”.

•	Relevant explanation

–	 Post: “My problem was that i tried to do every-
thing at the same time. Its important to take 
a breath few times a day. Like for me I’m a stu-
dent and after school my plan was to, practice 
programming(python), doing my website project, 
reading a book about programming and practic-
ing art. I burnt out and I am still unmotivated and 
feeling like shit. Don’t do too many things at the 
same time”.

–	 Explanation: “I burnt out and i still am unmoti-
vated and feeling like shit”.

•	Relevant explanation

–	 Post: “Yeah. I feel like I don’t even get excited 
about things anymore”.

–	 Explanation: “I feel like I don’t even get excited 
about things anymore”.

•	Non-Relevant explanation

–	 Post: “Even if it is, big fuckin’ woop. I liked the 
movie, and this event was fun. Who cares who 
organized it?”.

–	 Explanation: “I liked the movie, and this event was 
fun.”.

•	Non-Relevant explanation

–	 Post: “Nope. We are from Germany”.
–	 Explanation: “We are from Germany”.

Your job is to assess if the explanations given to a spe-
cific post are informative about some kind of depressive 
symptomatology. The relevance grades are:

•	Relevant (1): A relevant explanation should be rel-
evant to a depressive symptom, and it must corre-
spond to the content written in the original publi-
cation.

•	Non-relevant (0): A non-relevant sentence does not 
address any topic related to a depressive symptom, or 
the explanation is not informative about the original 
publication.
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The Excel sheet contains three columns (Post, Explana-
tion and Relevant Explanation). The column “Post” con-
tains the original post, the “Explanation” corresponds to 
the explanation based on that specific post. The last col-
umn, “Relevant Explanation”, is where you have to fill in 
0 or 1.

To measure the assessment effort, we ask you to record 
the time spent on fully evaluating the explanations 
presented.

Appendix 2: Prompt for conversational LLMs
See Fig. 5.

Fig. 5  Prompt used for our experiments with conversational LLMs
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